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Abstract: The Gompertz mortality is a frequently used two parameter survival distribution 

model. Standard parameter estimation such as algebraic technique requires deep understanding 

of its analytical properties together with mortality data for the parameter estimation to be 

meaningful. Many life offices in Scandinavian economies still use the model in life insurance 

valuation. Though life table is solely a product of actuarial mortality, its application is not 

limited to the computation of insurance premiums. The objective of this paper is to estimate the 

age-dependent mortality rate parameters of Gompertz model. Gompertz assumes that the 

population of the insured being considered is relatively stable. Because of the fixed change in the 

instantaneous mortality intensities and Gompertz cases, the life expectancy proportionally 

influences the associated mortality tables and hence many life insurance products including life 

annuities are being affected. The observed fixed changes in stable mortality table helps in 

determining the corresponding changes which may occur with respect to stress testing of life 

insurance schemes. In this paper, a hypothetical life table has been constructed which can be 

used to evaluate the life insurance products. Furthermore, some theorems were stated including 

the superimposition principles directly related to Gompertz and proved as part of our 

contributions. From the result of the data used, male and female were subjected to mortality rate 

at 109 to confirm lifespan. While male terminates at 109, female survives the same age till age 

112 and thus have longer life span than male counterpart. 
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1. Introduction   

Following work in [1], a new advanced numerical technique was applied to estimate the 

parameters in Gompertz model while differentiating males and females so as to construct 

mortality table. Furthermore, the work in [2] estimated the force of mortality using the numerical 

technique of first order differential equation. It was observed in [3] that Gompertz model is the 

most successful law of dying in human mortality actuarially defined as 
xC

xl kg where k, g and 

C are parameters. In [3]-[7], 
xl  projects the number of insured surviving to age x. The Authors 

derived new formulations of Gompertz and applied it to heterogeneous populations leading to 

stop loss transforms. However, [8] formulated a five-parameter type of Gompertz-Makeham 

model as a distribution function to allow flexibility. In [9]-[10], the Gompertz model was 

constructed in terms of modal age at death. In a study carried out in [10]-[12], empirical models 

for estimating Gompertz mortality with an application to evolution of the Gompertzian slope was 

investigated. It was observed that the constants are usually estimated from suitable mortality data 

set using actuarial procedures to allow us construct mortality table. Mortality tables are of two 

types in actuarial literature: the cohort and the current life tables. In [13]-[17], computing the 

probability of surviving to a particular age or the remaining life expectancy of the insured at 

distinct ages constitute some inferences which are drawn from the life table.  A cohort defines a 

collection of lives sharing unifying traits. Cohort life table describes the real mortality experience 

of a defined collection of lives from birth to the end of life where age specific probabilities are 

computed using number of death and population size in the current year and since cohort data is 

refined to a particular point in time, it is actually free of errors. Mortality statistics content of 

about 100 years in Cohort analysis is necessary which is obtainable only in few populations and 

which may be unreliable to a high degree. The unavailability and unreliability of the data pose a 

big threat when constructing a cohort life table for insurance use. Some lives in a collection may 

have emigrated or died without taking records, making the life expectancy of the collection of 

lives dead irrelevant. However, the current life table elicits a cross-sectional picture of the 

mortality and survival pattern at all ages in a population within small time interval but depends 

wholly on the current age-specific death rates in the year over which it is constructed. The 

current life table is a standard and valuable technique for comparing mortality data across 

boundaries and for appraising mortality patterns at the national level. Current life table forecast 

life span of every member of a hypothetical cohort based on the correct death rates in a defined 

population. Therefore, the life expectancy of an infant born in a current year, describes the 

expectation of life which would be determined assuming he is being subjected all through his 

lifespan to the same age-specific ruling mortality in that current year. The current life table 

represents imaginary and contrived pattern describing the mortality experience of a true 

population during any calendar year but, it is an efficient technique of recapitulating facts of 

mortality and survival patterns of a population so as to develop a sound hypothesis on which 

actuarial inference about the population are drawn. 

Following [12],[14], [18]-[21], it was reported that the probability of dying increases with age 

and believing that it is true for both modern and historic data. In order to resolve the problem of 

why mortality seems to follow the logistic model, the [12],[14] studied four models; the logistic 

model, Gompertz model, Weibull model, and the law of mortality, for effectiveness of modeling 

mortality at high ages. It was found out in [12],[14] that the logistic model leads to better results 

on data from 1980 to 1982, from England and Wales thereby outperforming the other three. He 

further observed that the logistic model fits better for the historical data from these areas and this 

motivated him to hypothesize several theories which model the probability density function at 
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the highest age. One view was that there is a fixed upper limit to the length of human life. 

Thatcher analyzed mortality data from different communities of the United Kingdom. Because 

he was studying historic data profile, he preferred demographic area where he could obtain long 

historical mortality records. In order to estimate the parameters of the models and fit them to the 

data, he applied the maximum likelihood estimation technique to analyze the mortality data. 

Furthermore, [18] studied the set conditions for modeling ageing, which they felt would create 

more consistency in the research of aging in different fields by conducting five experiments 

whose results in the field of bio-demography impacts the study of ageing. The authors observed 

that in reliability theory, different models seem quite applicable when considering biological 

aging, but noticed that the models lack biological reality. The authors observed models in four 

research areas: molecular biology, physics, reliability engineering, and evolutionary biology. It 

was noticed that the results of the experiment in one field area of study would possibly not model 

the same data using another field’s set condition. They thereafter set a convenient biological 

process which are built from all four fields and through simulations, confirmed the 

experimentally observed results.  

In order to test the fit of logistic models of the force of mortality, [19]-[20] applied data 

from the human mortality database for females and males aged 25–109 in 14 different countries. 

He thereafter suggested a new shifting logistic model that would efficiently forecast age-specific 

rates of adult mortality. The authors compared model to the Lee–Carter method for modeling and 

forecasting mortality by age and found out that his model dealt with many areas of weaknesses in 

the Lee–Carter model, this serves as a basis for age-specific mortality predictions. In [21], many 

actuarial models such as Gompertz, Perks, Polynomial and Wittstein models were applied to 

examine human mortality pattern.  

It was noticed in [22]-[23] that a well-defined actuarial technique for determining 

quantitatively mortality pattern in a cohort and spotting differences in age-specific mortality 

within the cohorts is necessary. In [18], explanation was obtained on how Gompertz parameters 

were actuarially estimated employing linear regression, that possess higher error than the 

maximum likelihood method, but he appreciated that the application of the maximum likelihood 

methods gives room for efficient and precise results of the mortality models. Moreover, [24] 

extended the senescent mortality of Gompertz to 100 years while conducting the adequacy of 

Taylor’s law on Gompertz’s, Makeham’s and Siler’s models. 

 

2 Mathematical Review of Actuarial functions 

X  is the random lifetime of a new-born. 

 The distribution of a life aged x  denoted as  x  is defined by its survival 

function:    xXxS  Pr0 ,   100 S ,    0 0lim 0
x

S S x


   . Non-increasing function of x  

does not have high probability of surviving longer duration. 

In [25], we observe the cumulative distribution function     xXxF  Pr0   (1) 

 Non-decreasing   000 F ; and   10 F                                         (2) 

   xSF 00 10                                                                                                   (3) 
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Probability density function:  
   

dx

xdS

dx

xdF
xf 00

0                                                        (4) 

non-negative:  0f x for any 0x                                                                                           (5) 

       0 0 0 0
0

, ,
x

x
F x f z dz and S x f z dz



            (6)                                                                                      

The force of mortality for a new born at age x: 

 

 

 

   

   0 0 0 0

0 0 0

log1

1

e

x

f x f x dS x d S x

F x S x S x dx dx
      


                                          (7) 

 

If 
x is the mortality intensity of  x in the calendar year s , then  

 
    0 0

0

Pr
limx
h

x T s x x h T s x x
s

h




      
 
 
 

 

In [25]  Pr |x x x X x x X x                                                                                  (8) 

For small x , 
x x   is the probability that a new born who has attained age x  dies between 

x and 1x  

  




 

x

z dzxS
0

0 exp 
                                                                                  

(9) 

  




 

x

zx dzxf
0

0 exp 
                                                                           

(10) 

     
0

0 0 0
0 0

e E X xf x dx S x dx
 

                                                                                     

     
(11) 

The RHS of the equation (11) is obtained using integration by parts. 

Variance:     
2

022 2
0Var X E X E X E X e

 
           

         (12)                 

For a person now aged x , its future lifetime is xXTx  .      (12a) 

For a newborn, 0x , so that we have XT 0 . 

xp  refers to the probability that  x  survives for another year. 

xx pq 1 , on the other hand, refers to the probability that  x  dies within one year. 
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3  Material and Methods 

3.1      The Gompertz Model 

The Gompertz survival model defines a population’s mortality rate
x with a two-parameter 

equation defined below. As both childhood and young ages pass, the mortality rates can be 

described in terms of exponential function. Gompertz first observed that the law of geometric 

progression pervades after a certain age in many populations and hence modelled the mortality 

risk exponentially as follows. The Gompertz exponential B shows the level of senescent mortality 

defining the exponential pattern of mortality at adulthood while C describes the geometric rise in 

mortality at higher ages  

 exp 1 , 0, 0, 1
log

x x

x x

B
BC l c x B c

c


 
        

 
     (13) 

0 0

x x
t

t dt BC dt             (13a) 

0
0

log log log

x
s x

x

s

e e e

Bc Bc B
ds

C C C


 
   
 


       (14)     

   

 
0

1 log , log
log

,
x

x

s e e

e

w
B

ds C g ghere
C




                                    (15)       

1

0
log

xx
C

s eds g


                                                                                                                 (16) 

1

0 log 1

0 0 0

x xc
xt t

e
d g C

xl l e l e l g



                                                                                             (17)                

0 0,
x xC C

x

l l
l g kg k

g g
            (18) 

 
1

1

x
x t

x

C
C C

s x s xC

kg
p p g

kg




           (19) 

3.2 Theorem 1 

If a mortality table follows Makeham’s model, then 

(i) 
x1 a a

a

x

x

x

 




 
 , where a x



 is evaluated at    and (ii) S 
  

Proof 

Suppose A x is the continuous whole life assurance, xa  is the continuous whole life annuity and is the 

force of interest 

 

     
0

A

x

s s
x s x xT x

v f t ds e P s ds 
 





          (20) 
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  x s

x s A BC             (21) 

 x

0

A

x

s x s

s xe P BC ds 


           (22) 

0 0

x x

s s x s
x s x s xA e P ds e P BC ds 

 

            (23) 

0 0

x x

s x s s
x s x s xA e P ds Bc e P C ds 

 

           (24) 

 log

0 0

e

x x
s cs x s

x s x s xA e P ds BC e P e ds 
 

          (25) 

  

  

log

0 0

log

0 0

e

e

x x
s Cs x

x s x s x

x x
s s Cs x

s x s x

A e P ds BC P e ds

e P ds BC P e ds









 


 
 

  



 

 

      (26) 

      

loges s C 
            (27) 

0 0

x x

s x
x s x s xA e P ds Bc P e ds 


 

           (28) 

xA a ax xx 


            (29) 

But A 1 ax x            (30) 

 

x x1 a a a a 1 a ax x x xx x     
 

             (31) 

x1 a a

a

x

x

x

 




 
           (32) 

log loge es s C s C    
             (33) 

If 0  in equation (26),  

 

 

log

0 0

e

x x
s Cx

x s x s x

x
x x

A P ds BC P e ds

e BC a



 

 
 



 

 

 
       (33a) 

  , logx x xx eA e a s C               (33b) 
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3.3 Theorem 2 

    A Ax x

MG

 
 

 
 

 where G denotes Gompertz and M , Makeham defined by 
x

x A BC    

where A is a constant 

Proof 

     
0

A

x

t t
x t x xT x

v f t dt e P s dt 
 





          (34) 

x t xt C C

t xP S g
            (35) 

 

   
0 0

A
x t x x t x

x x

t t C C t t C C
x x xe S g t dt e S g t dt  

 
 

           (36) 

     loglog

0 0

A
x t x x t x

ee

x x
t St S t C C C C

x x xe g t dt e g t dt
  

 
 

          (37) 

   
0

A
x t x

x

t C C
x x

gompertz
e g t dt 

 


           (38) 

log
e

S 
            (39) 

3.4 Superimposition Principle Theorem 

3.5 Theorem 3 

This principle tells us that if two different mortality cohorts of same age group have the same 

force of mortality under Gompetz mortality frame work, then the implication is that the 

aggregate probability of survival on their combination will not contain the initial mortality 

parameter. 

If 
   
1 2, ,

x t x x t xC C D Dx x

x t xBC AD then p h h
  

    

Proof 

0 0

0 0

x x
x x t t

x t

x x
t t

BC AD dt BC AD dt

BC dt AD dt

      



 

 
      (40) 

0
0 0

log log

x x
t t

x

t

e e

BC AD
dt

C D


   
    
   

         (41) 

0 log log log log

x x
x

t

e e e e

BC B AD A
dt

C C D D
            (42) 
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0 log log log log

x x
x

t

e e e e

BC B AD A
dt

C C D D
            (43) 

   

0 log log log log

1 1
log log

x x
x

t

e e e e

x x

e e

BC B AD A
dt

C C D D

B A
C D

C D


   

       
   

  


      (44) 

Let 1log
log

e

e

B
h

C


 , 2log

log
e

e

A
h

D


        (45) 

   

   

1 2
0

1 2

log 1 log 1

1 log 1 log

x
x x

t e e

x x

e e

dt h C h D

C h D h

      

    
 


      (46) 

   1 1

1 2
0

log log
x xx C D

t e edt h h
    

          (47) 

   1 1

1 2
0

log
x xx C D

t edt h h
   

           (48) 

       1 1

0 1 2
1 1log

0 0 0 1 2

x x xC D x x
t t

e
d C Dh h

xl l e l e l h h
                                                                         (49)                                        

0 0,
x xc c

x

l l
l g kg k

g g
            (50) 

   

   

       

       

   

   
   

1 1

1 1

1 1

0 1 2 0 1 1 2 2

1 1

0 1 2 1 0 1 2 2

1 2
1 2

1 2

x t x t x t x t

x x x x

x t x t

x t x x t x

x x

C D C C D D

t x
C D C C D D

C D
C C D D

C D

l h h l h h h h
p

l h h h l h h h

h h
h h

h h

     

 

 

 

 

 

 

  



      (51) 

 

4 Analysis and Presentation of Results 

For the purpose of this study, the data used in this study came mainly from the mortality of the 

population of England and Wales during the years 1990, 1991 and 1992. 

4.1 Results for Males 

1.086164248C                                                                                                                     (52) 

9995969509.0g                                      (53) 

21055.91840k                                                                                                                    (54) 

 0.000006284487297 1.086164248
x

x                       (55) 
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   1.086164248
91840.210546049 0.9995969509

x

xl   

4.2 Results for Females 

1.097489964C                                                                                                                             

9998729085.0g                            

08259.94880k                                                                                                                     (56) 

 0.000002230056027 1.097489964
x

x                 (57) 

   1.097489964
94880.08259 0.9998729085

x

xl         (58) 

The life table computed below is assumed to describe the mortality level from age 20 years till 

the end of mortality table and for every individual age, the corresponding risk of death is given. 

When mortality data are available, actuarial computations can be performed conveniently. 

However, the availability of mortality data varies with ages where older ages are well covered 

when compared with lower. The mortality data was sourced from the mortality of the population 

of England and Wales during the years 1990, 1991 and 1992 because the data was believed to 

have been validated and hence will be more reliable. Furthermore, there is no available mortality 

data which can be sourced locally. This occurs because there is no vital registration system 

which can continuously collect reliable information. 

4.3      Males Mortality Table 

Table 1: Male Mortality Table based on Gompertz Model 

x xl  xd  xq  
xp  xL  xT  xe  

xe  xx e  
x  

20 91647 17 0.00018 0.9998 91639 6200918 67.67 68.167 87.67 3.28E-05 

21 91630 18 0.0002 0.9998 91621 6109279 66.68 67.1796 87.68 3.57E-05 

22 91612 20 0.00021 0.9998 91603 6017658 65.69 66.1931 87.69 3.87E-05 

23 91593 21 0.00023 0.9998 91582 5926055 64.71 65.2076 87.71 4.21E-05 

24 91571 23 0.00025 0.9997 91560 5834473 63.72 64.223 87.72 4.57E-05 

25 91548 25 0.00027 0.9997 91536 5742913 62.74 63.2395 87.74 4.96E-05 

26 91523 27 0.0003 0.9997 91510 5651377 61.76 62.2572 87.76 5.39E-05 

27 91496 30 0.00032 0.9997 91481 5559868 60.78 61.2761 87.78 5.85E-05 

28 91466 32 0.00035 0.9996 91450 5468386 59.8 60.2963 87.8 6.36E-05 

29 91434 35 0.00038 0.9996 91417 5376936 58.82 59.3178 87.82 6.91E-05 

30 91399 38 0.00042 0.9996 91380 5285519 57.84 58.3408 87.84 7.50E-05 

31 91361 41 0.00045 0.9996 91341 5194139 56.87 57.3654 87.87 8.15E-05 
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32 91320 45 0.00049 0.9995 91298 5102798 55.89 56.3917 87.89 8.85E-05 

33 91276 48 0.00053 0.9995 91251 5011500 54.92 55.4197 87.92 9.61E-05 

34 91227 53 0.00058 0.9994 91201 4920249 53.95 54.4496 87.95 0.000104 

35 91175 57 0.00063 0.9994 91146 4829048 52.98 53.4815 87.98 0.000113 

36 91117 62 0.00068 0.9993 91086 4737902 52.02 52.5155 88.02 0.000123 

37 91055 67 0.00074 0.9993 91022 4646815 51.05 51.5517 88.05 0.000134 

38 90988 73 0.0008 0.9992 90952 4555793 50.09 50.5903 88.09 0.000145 

39 90915 79 0.00087 0.9991 90875 4464842 49.13 49.6315 88.13 0.000158 

40 90836 86 0.00095 0.9991 90793 4373966 48.18 48.6753 88.18 0.000171 

41 90750 93 0.00103 0.999 90703 4283174 47.22 47.7219 88.22 0.000186 

42 90656 101 0.00112 0.9989 90606 4192471 46.27 46.7716 88.27 0.000202 

43 90555 110 0.00121 0.9988 90500 4101865 45.32 45.8244 88.32 0.00022 

44 90445 119 0.00132 0.9987 90386 4011365 44.38 44.8806 88.38 0.000239 

45 90326 129 0.00143 0.9986 90261 3920979 43.44 43.9403 88.44 0.000259 

46 90197 140 0.00156 0.9984 90127 3830718 42.5 43.0037 88.5 0.000281 

47 90057 152 0.00169 0.9983 89981 3740591 41.57 42.0711 88.57 0.000306 

48 89904 165 0.00183 0.9982 89822 3650610 40.64 41.1427 88.64 0.000332 

49 89740 179 0.00199 0.998 89650 3560788 39.72 40.2187 88.72 0.000361 

50 89561 194 0.00216 0.9978 89464 3471138 38.8 39.2993 88.8 0.000392 

51 89367 210 0.00235 0.9977 89262 3381674 37.88 38.3847 88.88 0.000426 

52 89157 227 0.00255 0.9974 89043 3292412 36.98 37.4753 88.98 0.000462 

53 88930 246 0.00277 0.9972 88807 3203368 36.07 36.5713 89.07 0.000502 

54 88683 267 0.00301 0.997 88550 3114562 35.17 35.673 89.17 0.000545 

55 88416 289 0.00327 0.9967 88272 3026012 34.28 34.7806 89.28 0.000592 

56 88127 313 0.00355 0.9965 87971 2937740 33.39 33.8944 89.39 0.000643 

57 87815 338 0.00386 0.9961 87645 2849769 32.51 33.0148 89.51 0.000699 

58 87476 366 0.00419 0.9958 87293 2762124 31.64 32.142 89.64 0.000759 

59 87110 396 0.00455 0.9955 86912 2674831 30.78 31.2763 89.78 0.000824 



Ogungbenle Gbenga Michael 

 

Journal of Science-FAS-SEUSL (2021) 02(01)  11 

60 86714 428 0.00494 0.9951 86500 2587919 29.92 30.4182 89.92 0.000895 

61 86286 463 0.00536 0.9946 86055 2501419 29.07 29.5678 90.07 0.000973 

62 85823 500 0.00582 0.9942 85574 2415364 28.23 28.7256 90.23 0.001056 

63 85324 539 0.00632 0.9937 85054 2329790 27.39 27.8919 90.39 0.001147 

64 84784 582 0.00686 0.9931 84493 2244736 26.57 27.067 90.57 0.001246 

65 84202 628 0.00745 0.9925 83889 2160243 25.75 26.2513 90.75 0.001354 

66 83575 676 0.00809 0.9919 83237 2076354 24.95 25.4452 90.95 0.00147 

67 82898 728 0.00879 0.9912 82534 1993118 24.15 24.649 91.15 0.001597 

68 82170 784 0.00954 0.9905 81778 1910584 23.36 23.8631 91.36 0.001734 

69 81386 843 0.01036 0.9896 80964 1828806 22.59 23.0878 91.59 0.001884 

70 80543 906 0.01125 0.9888 80090 1747841 21.82 22.3234 91.82 0.002046 

71 79637 972 0.01221 0.9878 79151 1667751 21.07 21.5705 92.07 0.002223 

72 78665 1043 0.01325 0.9867 78144 1588600 20.33 20.8293 92.33 0.002414 

73 77622 1117 0.01439 0.9856 77064 1510456 19.6 20.1001 92.6 0.002622 

74 76505 1195 0.01562 0.9844 75908 1433393 18.88 19.3833 92.88 0.002848 

75 75311 1277 0.01695 0.983 74672 1357485 18.18 18.6793 93.18 0.003093 

76 74034 1362 0.0184 0.9816 73353 1282813 17.49 17.9883 93.49 0.00336 

77 72672 1451 0.01997 0.98 71946 1209460 16.81 17.3106 93.81 0.003649 

78 71220 1543 0.02167 0.9783 70449 1137514 16.15 16.6467 94.15 0.003964 

79 69677 1639 0.02352 0.9765 68858 1067065 15.5 15.9966 94.5 0.004305 

80 68039 1736 0.02552 0.9745 67171 998207 14.86 15.3608 94.86 0.004676 

81 66302 1836 0.02768 0.9723 65385 931037 14.24 14.7394 95.24 0.005079 

82 64467 1936 0.03003 0.97 63499 865652 13.63 14.1325 95.63 0.005517 

83 62531 2037 0.03258 0.9674 61512 802153 13.04 13.5405 96.04 0.005992 

84 60494 2138 0.03534 0.9647 59425 740641 12.46 12.9635 96.46 0.006509 

85 58356 2236 0.03832 0.9617 57238 681216 11.9 12.4015 96.9 0.007069 

86 56120 2332 0.04155 0.9584 54954 623978 11.35 11.8546 97.35 0.007679 

87 53788 2423 0.04505 0.9549 52576 569024 10.82 11.3228 97.82 0.00834 
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88 51365 2509 0.04884 0.9512 50110 516447 10.31 10.8062 98.31 0.009059 

89 48856 2586 0.05293 0.9471 47563 466337 9.8 10.3046 98.8 0.009839 

90 46270 2654 0.05736 0.9426 44943 418774 9.32 9.81785 99.32 0.010687 

91 43616 2711 0.06215 0.9379 42261 373831 8.85 9.34578 99.85 0.011608 

92 40906 2754 0.06732 0.9327 39529 331570 8.39 8.88805 100.4 0.012608 

93 38152 2781 0.0729 0.9271 36761 292041 7.94 8.44422 100.9 0.013695 

94 35371 2792 0.07893 0.9211 33975 255279 7.51 8.01375 101.5 0.014875 

95 32579 2783 0.08543 0.9146 31188 221304 7.1 7.59592 102.1 0.016156 

96 29796 2754 0.09244 0.9076 28419 190117 6.69 7.18982 102.7 0.017548 

97 27042 2704 0.09999 0.9 25690 161698 6.29 6.79427 103.3 0.01906 

98 24338 2631 0.10812 0.8919 23022 136008 5.91 6.40775 103.9 0.020703 

99 21706 2537 0.11687 0.8831 20438 112986 5.53 6.02829 104.5 0.022487 

100 19169 2421 0.12628 0.8737 17959 92548.5 5.15 5.65332 105.2 0.024424 

101 16749 2284 0.13639 0.8636 15607 74589.4 4.78 5.27938 105.8 0.026529 

102 14464 2130 0.14723 0.8528 13400 58982.9 4.4 4.90184 106.4 0.028815 

103 12335 1959 0.15885 0.8412 11355 45583.3 4.01 4.51434 107 0.031297 

104 10375 1777 0.1713 0.8287 9487 34228.2 3.61 4.10798 107.6 0.033994 

105 8598 1587 0.1846 0.8154 7805 24741.4 3.17 3.67012 108.2 0.036923 

106 7011 1394 0.19882 0.8012 6314 16936.8 2.68 3.18243 108.7 0.040105 

107 5617 1202 0.21397 0.786 5016 10622.9 2.12 2.61775 109.1 0.04356 

108 4415 1016 0.23011 0.7699 3907 5606.75 1.43 1.93499 109.4 0.047313 

109 3399 3399 1 0 1700 1699.59 1 1.5 110 0.05139 
 

 

4.4       Female Mortality Table 

Table 2: Female Mortality Table based on Gompertz Model 

X xl  xd  xq  
xp  xL  xT  xe  

xe  xx e  
x  

20 94803 8 7.96E-05 0.99992 94799 6661665 70.27 70.8 90 1.43E-05 
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21 94795 8 8.74E-05 0.999913 94791 6566866 69.28 69.8 90 1.57E-05 

22 94787 9 9.59E-05 0.999904 94782 6472075 68.28 68.8 90 1.73E-05 

23 94778 10 0.0001053 0.999895 94773 6377293 67.29 67.8 90 1.89E-05 

24 94768 11 0.0001155 0.999884 94762 6282520 66.3 66.8 90 2.08E-05 

25 94757 12 0.0001268 0.999873 94751 6187758 65.31 65.8 90 2.28E-05 

26 94745 13 0.0001392 0.999861 94738 6093007 64.31 64.8 90 2.50E-05 

27 94732 14 0.0001527 0.999847 94724 5998269 63.32 63.8 90 2.75E-05 

28 94717 16 0.0001676 0.999832 94709 5903545 62.33 62.8 90 3.02E-05 

29 94701 17 0.0001839 0.999816 94693 5808835 61.34 61.8 90 3.31E-05 

30 94684 19 0.0002019 0.999798 94674 5714143 60.36 60.9 90 3.63E-05 

31 94665 21 0.0002216 0.999778 94654 5619469 59.37 59.9 90 3.99E-05 

32 94644 23 0.0002431 0.999757 94632 5524815 58.38 58.9 90 4.38E-05 

33 94621 25 0.0002668 0.999733 94608 5430182 57.4 57.9 90 4.80E-05 

34 94595 28 0.0002929 0.999707 94582 5335574 56.41 56.9 90 5.27E-05 

35 94568 30 0.0003214 0.999679 94553 5240993 55.43 55.9 90 5.79E-05 

36 94537 33 0.0003527 0.999647 94521 5146440 54.45 55 90 6.35E-05 

37 94504 37 0.0003871 0.999613 94486 5051919 53.47 54 90 6.97E-05 

38 94467 40 0.0004248 0.999575 94447 4957434 52.49 53 90 7.65E-05 

39 94427 44 0.0004663 0.999534 94405 4862986 51.51 52 91 8.39E-05 

40 94383 48 0.0005117 0.999488 94359 4768581 50.54 51 91 9.21E-05 

41 94335 53 0.0005616 0.999438 94308 4674222 49.56 50.1 91 0.000101 

42 94282 58 0.0006163 0.999384 94253 4579914 48.59 49.1 91 0.000111 

43 94224 64 0.0006764 0.999324 94192 4485661 47.62 48.1 91 0.000122 

44 94160 70 0.0007423 0.999258 94125 4391469 46.66 47.2 91 0.000134 

45 94090 77 0.0008146 0.999185 94052 4297343 45.69 46.2 91 0.000147 

46 94014 84 0.000894 0.999106 93972 4203291 44.73 45.2 91 0.000161 

47 93930 92 0.0009811 0.999019 93883 4109320 43.77 44.3 91 0.000177 

48 93837 101 0.0010767 0.998923 93787 4015436 42.81 43.3 91 0.000194 
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49 93736 111 0.0011816 0.998818 93681 3921649 41.86 42.4 91 0.000213 

50 93626 121 0.0012967 0.998703 93565 3827968 40.91 41.4 91 0.000234 

51 93504 133 0.0014231 0.998577 93438 3734404 39.97 40.5 91 0.000256 

52 93371 146 0.0015617 0.998438 93298 3640966 39.03 39.5 91 0.000281 

53 93225 160 0.0017138 0.998286 93145 3547668 38.09 38.6 91 0.000309 

54 93066 175 0.0018807 0.998119 92978 3454522 37.15 37.7 91 0.000339 

55 92891 192 0.0020639 0.997936 92795 3361544 36.23 36.7 91 0.000372 

56 92699 210 0.0022649 0.997735 92594 3268750 35.3 35.8 91 0.000408 

57 92489 230 0.0024854 0.997515 92374 3176156 34.38 34.9 91 0.000448 

58 92259 252 0.0027274 0.997273 92133 3083782 33.47 34 91 0.000492 

59 92007 275 0.0029929 0.997007 91870 2991649 32.56 33.1 92 0.000539 

60 91732 301 0.0032842 0.996716 91581 2899779 31.66 32.2 92 0.000592 

61 91431 329 0.0036037 0.996396 91266 2808198 30.77 31.3 92 0.00065 

62 91101 360 0.0039544 0.996046 90921 2716932 29.88 30.4 92 0.000713 

63 90741 394 0.0043391 0.995661 90544 2626010 29 29.5 92 0.000783 

64 90347 430 0.0047611 0.995239 90132 2535466 28.13 28.6 92 0.000859 

65 89917 470 0.005224 0.994776 89682 2445334 27.27 27.8 92 0.000943 

66 89447 513 0.0057318 0.994268 89191 2355652 26.41 26.9 92 0.001035 

67 88935 559 0.0062889 0.993711 88655 2266461 25.56 26.1 93 0.001135 

68 88375 610 0.0068998 0.9931 88071 2177806 24.73 25.2 93 0.001246 

69 87766 664 0.00757 0.99243 87433 2089735 23.9 24.4 93 0.001368 

70 87101 723 0.0083049 0.991695 86740 2002302 23.08 23.6 93 0.001501 

71 86378 787 0.0091108 0.990889 85984 1915562 22.28 22.8 93 0.001647 

72 85591 855 0.0099946 0.990005 85163 1829578 21.48 22 93 0.001808 

73 84735 929 0.0109636 0.989036 84271 1744415 20.7 21.2 94 0.001984 

74 83806 1008 0.012026 0.987974 83303 1660144 19.93 20.4 94 0.002177 

75 82799 1092 0.0131906 0.986809 82253 1576841 19.17 19.7 94 0.00239 

76 81706 1182 0.0144672 0.985533 81115 1494589 18.43 18.9 94 0.002623 
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77 80524 1278 0.0158664 0.984134 79886 1413473 17.69 18.2 95 0.002878 

78 79247 1379 0.0173997 0.9826 78557 1333588 16.98 17.5 95 0.003159 

79 77868 1486 0.0190797 0.98092 77125 1255030 16.27 16.8 95 0.003467 

80 76382 1598 0.0209202 0.97908 75583 1177905 15.58 16.1 96 0.003805 

81 74784 1715 0.0229361 0.977064 73927 1102322 14.91 15.4 96 0.004176 

82 73069 1837 0.0251438 0.974856 72150 1028396 14.25 14.8 96 0.004583 

83 71232 1963 0.027561 0.972439 70250 956245 13.61 14.1 97 0.00503 

84 69269 2092 0.030207 0.969793 68222 885995 12.99 13.5 97 0.00552 

85 67176 2224 0.0331026 0.966897 66064 817773 12.38 12.9 97 0.006058 

86 64952 2356 0.0362706 0.963729 63774 751709 11.79 12.3 98 0.006649 

87 62597 2487 0.0397354 0.960265 61353 687934 11.21 11.7 98 0.007297 

88 60109 2616 0.0435237 0.956476 58801 626581 10.66 11.2 99 0.008009 

89 57493 2740 0.0476642 0.952336 56123 567780 10.12 10.6 99 0.00879 

90 54753 2857 0.0521876 0.947812 53324 511657 9.6 10.1 100 0.009646 

91 51895 2965 0.0571273 0.942873 50413 458333 9.09 9.59 100 0.010587 

92 48931 3059 0.062519 0.937481 47401 407920 8.61 9.11 101 0.011619 

93 45872 3138 0.0684008 0.931599 44303 360519 8.14 8.64 101 0.012752 

94 42734 3197 0.0748136 0.925186 41135 316216 7.69 8.19 102 0.013995 

95 39537 3234 0.0818007 0.918199 37920 275081 7.25 7.75 102 0.015359 

96 36303 3246 0.0894084 0.910592 34680 237161 6.84 7.34 103 0.016857 

97 33057 3229 0.0976851 0.902315 31442 202481 6.44 6.94 103 0.0185 

98 29828 3182 0.1066822 0.893318 28237 171039 6.06 6.56 104 0.020303 

99 26646 3103 0.1164532 0.883547 25094 142802 5.69 6.19 105 0.022283 

100 23543 2991 0.1270538 0.872946 22047 117708 5.34 5.84 105 0.024455 

101 20552 2847 0.1385415 0.861459 19128 95661 5 5.5 106 0.026839 

102 17704 2673 0.1509752 0.849025 16368 76533 4.68 5.18 107 0.029456 

103 15031 2471 0.1644147 0.835585 13796 60165 4.36 4.86 107 0.032328 

104 12560 2247 0.1789196 0.82108 11436 46370 4.05 4.55 108 0.035479 
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105 10313 2006 0.1945489 0.805451 9310 34933 3.75 4.25 109 0.038938 

106 8306 1756 0.2113598 0.78864 7429 25624 3.45 3.95 109 0.042734 

107 6551 1503 0.2294059 0.770594 5799 18195 3.14 3.64 110 0.0469 

108 5048 1256 0.2487365 0.751264 4420 12396 2.8 3.3 111 0.051473 

109 3792 1022 0.2693939 0.730606 3282 7975 2.43 2.93 111 0.056491 

110 2771 807 0.291412 0.708588 2367 4694 1.98 2.48 112 0.061998 

111 1963 618 0.3148137 0.685186 1654 2327 1.41 1.91 112 0.068042 

112 1345 1345 1 0 673 673 1 1.5 113 0.074676 
 

 

5       Discussion of results 

The actuarial assumption over which life table is constructed, takes a trend of assumed mortality 

rate at every integral age, and provided that such a sequence of rates and an arbitrary 
xl exist, 

then 
xl column can be computed at integral values of x. Gompertz model has been formulated as 

an analytical function to compute death probabilities but a reliable estimation technique is 

necessary to determine the parameters of the model. The function 
xl is assumed to be positive 

and non-increasing and defines the numbers of insured who are expected to survive to age x. 

From the life tables constructed, at age 20, males have a xq  value of 0.000181, while females 

have a xq  value of 0.0000796339. The observed trend shows that females have lower probability 

of mortalities than males as a result of mortality strain experienced by both sexes. From the 

tables, it seems that there is a sudden change in the number of deaths xl  at consecutive ages as 

from age 50 for both male and female. However, at ages 109, the males have 1xq  , while for 

females 0.269393907xq  . This age has critical implication as it is the smallest age beyond 

which no male exists thus all males are assumed terminated. However, females are still expected 

to continue surviving beyond age 109 for three more years. Based on both life tables constructed, 

males were observed to have higher xq  values than females. Whereas males lived up to 109 

years, females could live up to 112 years. In order to obtain an actuarial technique to life 

insurance contract meant to ease out the financial strain and its consequences at death, an 

empirical mortality table based on Gompertz’ law of mortality has been constructed. 

 

6 Conclusion 

A Properly constructed actuarial model could be a useful instrument in coping with a wide range 

of mathematical analysis associated with mortality tables. This is because the insured population 

mortality estimation is important to life office’s calculation of expected liability in satisfying the 

regulatory requirements so as to compete for market shares. In this paper, we present Gompertz 

mortality model based on England and Wales insured population data with a focus on gaining 

insight into mortality analysis by addressing analytical techniques of estimating its parameters. 

The use of the hypothetical mortality table in pricing life assurances may offer a better view of a 
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gradual directional change in mortality leading to a complex form of evolution. These are the 

expected death rates that have been projected to estimate life and pension obligations. Insurance 

regulatory framework usually specifies guidelines on mortality rates and assumptions to follow 

because assumptions are critical in terms of pricing. The estimated life expectancy is used to 

compute the long-term obligations of life fund. Low mortality assumptions suggest that long 

term liability of pension funds could be overestimated, however, high assumptions would 

indicate that life expectancy of the pension scheme will be underestimated and hence 

underestimating the obligations of pension fund and life insurance providers. From the 

observations made from both life tables constructed, we can see that the male population was 

observed to suffer higher mortality rates than the female population, this was evidenced by the 

values of xq  for males which were significantly higher than the values of xq  obtained for 

females. The xp  values which indicated the probability that a person’s exact age x  will live 

within one year for males were lower than those of females which further proves that the male 

population suffers higher rate of mortality than females.  Furthermore, the xT  signifies the 

number of person-years lived after exact age x , the values obtained for males were lower than 

the values obtained for females indicating that males had shorter person-years to live when 

compared to females. A closer look at the sex differential in mortality by distribution of age 

shows that females have lower mortality at all ages and females were observed to live longer up 

to 112 years while males short live only to 109 years. When Gompertz law is applied, we 

discovered that C-value for males is lower than that of females while the B-value for male is 

higher than that of female. It is important to note that the life tables meant to be used for life 

insurance valuation may not have same B and C values as our hypothetical tables because 

margins usually added to the basic experience year of valuation table would reduce the 

proportion of mortality rates when age advances.   
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